Abstract

Abstract In this paper, we study the bi-objective prize-collecting Steiner tree problem, whose goal is to find a subtree that minimizes the edge costs for building that tree, and, at the same time, to maximize the collected node revenues. We propose to solve the problem using an ϵ -constraint algorithm. This is an iterative mixed-integer-programming framework that identifies one solution for every point on the Pareto front. In this framework, a branch-and-cut approach for the single-objective variant of the problem is enhanced with warm-start procedures that are used to (i) generate feasible solutions, (ii) generate violated cutting planes, and (iii) guide the branching process. Standard benchmark instances from the literature are used to assess the efficacy of our method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.