Abstract
Different approaches to solve the spinor–spinor Bethe–Salpeter (BS) equation in Euclidean space are considered. It is argued that the complete set of Dirac matrices is the most appropriate basis to define the partial amplitudes and to solve numerically the resulting system of equations with realistic interaction kernels. Other representations can be obtained by performing proper unitary transformations. A generalization of the iteration method for finding the energy spectrum of the BS equation is discussed and examples of concrete calculations are presented. Comparison of relativistic calculations with available experimental data and with corresponding non relativistic results together with an analysis of the role of Lorentz boost effects and relativistic corrections are presented. A novel method related to the use of hyperspherical harmonics is considered for a representation of the vertex functions suitable for numerical calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.