Abstract

This article proposes a methodology that introduces attribute reduction of rough sets into crossover of genetic algorithms (GAs), and then uses the methodology to develop two algorithms. The first algorithm selects the crossover points, either by attribute reduction or randomly; the second selects the crossover points solely by attribute reduction, with no crossover otherwise. We test the methodology on the solving of the 0/1 knapsack problem, due to the problem's NP-hard complexity, and we compare the experiment results to those of typical GAs. According to the results, the introduction of attribute reduction increases the mean and decreases the standard deviation of the final solutions, especially in the presence of tighter capacity, i.e. attribution reduction leads to better solution quality and more tightly clustered solutions. Moreover, the mean number of iterations required to terminate the algorithm and that required to reach maximal profits are significantly reduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.