Abstract
The text clustering is considered as one of the most effective text document analysis methods, which is applied to cluster documents as a consequence of the expanded big data and online information. Based on the review of the related work of the text clustering algorithms, these algorithms achieved reasonable clustering results for some datasets, while they failed on a wide variety of benchmark datasets. Furthermore, the performance of these algorithms was not robust due to the inefficient balance between the exploitation and exploration capabilities of the clustering algorithm. Accordingly, this research proposes a Memetic Differential Evolution algorithm (MDETC) to solve the text clustering problem, which aims to address the effect of the hybridization between the differential evolution (DE) mutation strategy with the memetic algorithm (MA). This hybridization intends to enhance the quality of text clustering and improve the exploitation and exploration capabilities of the algorithm. Our experimental results based on six standard text clustering benchmark datasets (i.e. the Laboratory of Computational Intelligence (LABIC)) have shown that the MDETC algorithm outperformed other compared clustering algorithms based on AUC metric, F-measure, and the statistical analysis. Furthermore, the MDETC is compared with the state of art text clustering algorithms and obtained almost the best results for the standard benchmark datasets.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.