Abstract

We propose a protocol for solving systems of linear algebraic equations via quantum mechanical methods using the minimal number of qubits. We show that $(M+1)$-qubit system is enough to solve a system of $M$ equations for one of the variables leaving other variables unknown provided that the matrix of a linear system satisfies certain conditions. In this case, the vector of input data (the rhs of a linear system) is encoded into the initial state of the quantum system. This protocol is realized on the 5-qubit superconducting quantum processor of IBM Quantum Experience for particular linear systems of three equations. We also show that the solution of a linear algebraic system can be obtained as the result of a natural evolution of an inhomogeneous spin-1/2 chain in an inhomogeneous external magnetic field with the input data encoded into the initial state of this chain. For instance, using such evolution in a 4-spin chain we solve a system of three equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.