Abstract

The present contribution demonstrates the applicability of polynomial chaos expansion to stochastic (optimal) AC power flow problems that arise in the operation of power grids. For rectangular power flow, polynomial chaos expansion together with Galerkin projection yields a deterministic reformulation of the stochastic power flow problem that is solved numerically in a single run. From its solution, approximations of the true posterior probability density functions are obtained. The presented approach does not require linearization. Furthermore, the IEEE 14 bus serves as an example to demonstrate that the proposed approach yields accurate approximations to the probability density functions for low orders of polynomial bases, and that it is computationally more efficient than Monte Carlo sampling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.