Abstract

Computer simulation of dynamic systems very often leads to the solution of a set of stiff ordinary differential equations. The solution of this set of equations involves the eigenvalues of its Jacobian matrix. The greater the spread in eigenvalues, the more time consuming the solutions become when existing numerical methods are employed. Extremely stiff differential equations can become a very serious problem for some systems, rendering accurate numerical solutions completely uneconomic. In this paper, we propose new techniques for solving extremely stiff systems of differential equations. These algorithms are based on a class of implicit Runge-Kutta procedure with complete error estimate. The new techniques are applied to solving mathematical models of the relaxation problem behind blast waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.