Abstract

This research article introduces an efficient method for integrating Lane–Emden–Fowler equations of second-order singular initial value problems (SIVPs) using a pair of hybrid block methods with a variable step-size mode. The method pairs an optimized Nyström technique with a set of formulas applied at the initial step to circumvent the singularity at the beginning of the interval. The variable step-size formulation is implemented using an embedded-type approach, resulting in an efficient technique that outperforms its counterpart methods that used fixed step-size implementation. The numerical simulations confirm the better performance of the variable step-size implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call