Abstract
The renewed interest in investigating quaternionic quantum mechanics, in particular tunneling effects, and the recent results on quaternionic differential operators motivate the study of resolution methods for quaternionic differential equations. In this paper, by using the real matrix representation of left/right acting quaternionic operators, we prove existence and uniqueness for quaternionic initial value problems, discuss the reduction of order for quaternionic homogeneous differential equations and extend to the noncommutative case the method of variation of parameters. We also show that the standard Wronskian cannot uniquely be extended to the quaternionic case. Nevertheless, the absolute value of the complex Wronskian admits a noncommutative extension for quaternionic functions of one real variable. Linear dependence and independence of solutions of homogeneous (right) H-linear differential equations is then related to this new functional. Our discussion is, for simplicity, presented for quaternionic second order differential equations. This involves no loss of generality. Definitions and results can be readily extended to the n-order case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.