Abstract

Multistage stochastic programs with continuous underlying distributions involve the obstacle of high-dimensional integrals where the integrands' values again are given by solutions of stochastic programs. A common solution technique consists of discretizing the support of the original distributions leading to scenario trees and corresponding LPs which are – up to a certain size – easy to solve. In order to improve the accuracy of approximation, successive refinements of the support result in rapidly expanding scenario trees and associated LPs. Hence, the solvability of the multistage stochastic program is limited by the numerical solvability of sequences of such expanding LPs. This work describes an algorithmic technique for solving the large-scale LP of refinement ν based on the solutions at the previous ν−1 refinements. Numerical results are presented for practical problem statements within financial applications demonstrating significant speedup (depending on the size of the LP instances).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.