Abstract
We introduce a new numerical solution method for semi-infinite optimization problems with convex lower level problems. The method is based on a reformulation of the semi-infinite problem as a Stackelberg game and the use of regularized nonlinear complementarity problem functions. This approach leads to central path conditions for the lower level problems, where for a given path parameter a smooth nonlinear finite optimization problem has to be solved. The solution of the semi-infinite optimization problem then amounts to driving the path parameter to zero. We show convergence properties of the method and give a number of numerical examples from design centering and from robust optimization, where actually so-called generalized semi-infinite optimization problems are solved. The presented method is easy to implement, and in our examples it works well for dimensions of the semi-infinite index set at least up to 150.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.