Abstract

Linear optimization problems (LPs) with a very large or even infinite number of constraints frequently appear in many forms in machine learning. A linear program with m constraints can be written as where I assume for simplicity that the domain of x is the n dimensional probability simplex . Optimization problems with an infinite number of constraints of the form , for all j∈J, are called semi-infinite, when the index set J has infinitely many elements, e.g. J=ℝ. In the finite case the constraints can be described by a matrix with m rows and n columns that can be used to directly solve the LP. In semi-infinite linear programs (SILPs) the constraints are often given in a functional form depending on j or implicitly defined, for instance by the outcome of another algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.