Abstract
Segment routing is an emerging network technology that exploits the existence of several paths between a source and a destination to spread the traffic in a simple and elegant way. The major commercial network vendors already support segment routing, and several Internet actors are ready to use segment routing in their network. Unfortunately, by changing the way paths are computed, segment routing poses new optimization problems which cannot be addressed with previous research contributions. In this paper, we propose a new hybrid constraint programming framework to solve traffic engineering problems in segment routing. We introduce a new representation of path variables which can be seen as a lightweight relaxation of usual representations. We show how to define and implement fast propagators on these new variables while reducing the memory impact of classical traffic engineering models. The efficiency of our approach is confirmed by experiments on real and artificial networks of big Internet actors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.