Abstract

AbstractWe consider the fundamental problem of solving quadratic systems of equations in , and is unknown. We propose a novel method, which starts with an initial guess computed by means of a spectral method and proceeds by minimizing a nonconvex functional as in the Wirtinger flow approach [13]. There are several key distinguishing features, most notably a distinct objective functional and novel update rules, which operate in an adaptive fashion and drop terms bearing too much influence on the search direction. These careful selection rules provide a tighter initial guess, better descent directions, and thus enhanced practical performance. On the theoretical side, we prove that for certain unstructured models of quadratic systems, our algorithms return the correct solution in linear time, i.e., in time proportional to reading the data {ai} and {yi} as soon as the ratio m/n between the number of equations and unknowns exceeds a fixed numerical constant. We extend the theory to deal with noisy systems in which we only have and prove that our algorithms achieve a statistical accuracy, which is nearly unimprovable. We complement our theoretical study with numerical examples showing that solving random quadratic systems is both computationally and statistically not much harder than solving linear systems of the same size—hence the title of this paper. For instance, we demonstrate empirically that the computational cost of our algorithm is about four times that of solving a least squares problem of the same size. © 2016 Wiley Periodicals, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.