Abstract

This paper presents a framework to derive instantiation-based decision procedures for satisfiability of quantified formulas in first-order theories, including its correctness, implementation, and evaluation. Using this framework we derive decision procedures for linear real arithmetic and linear integer arithmetic formulas with one quantifier alternation. We discuss extensions of these techniques for handling mixed real and integer arithmetic, and to formulas with arbitrary quantifier alternations. For the latter, we use a novel strategy that handles quantified formulas that are not in prenex normal form, which has advantages with respect to existing approaches. All of these techniques can be integrated within the solving architecture used by typical SMT solvers. Experimental results on standardized benchmarks from model checking, static analysis, and synthesis show that our implementation in the SMT solver cvc4 outperforms existing tools for quantified linear arithmetic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.