Abstract
We describe a branch-and-bound algorithm for the quadratic assignment problem (QAP) that uses a convex quadratic programming (QP) relaxation to obtain a bound at each node. The QP subproblems are approximately solved using the Frank-Wolfe algorithm, which in this case requires the solution of a linear assignment problem on each iteration. Our branching strategy makes extensive use of dual information associated with the QP subproblems. We obtain state-of-the-art computational results on large benchmark QAPs
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.