Abstract
Many verification and synthesis approaches rely on solving techniques for quantified Boolean formulas (QBF). Consequently, solution witnesses, in the form of Boolean functions, become more and more important as they represent implementations or counterexamples. We present a recursive counterexample guided abstraction and refinement algorithm (CEGAR) for solving and certifying QBFs that exploits structural reasoning on the formula level. The algorithm decomposes the given QBF into one propositional formula for every block of quantifiers that abstracts from assignments of variables not bound by this quantifier block. Further, we show how to derive an efficient certification extraction method on top of the algorithm. We report on experimental evaluation of this algorithm in the solver QuAbS (Quantified Abstraction Solver) which won the most recent QBF competition (QBFEVAL'18). Further, we show the effectiveness of the certification approach using synthesis benchmarks and a case study for synthesizing winning strategies in Petri Games.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electronic Proceedings in Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.