Abstract
In recent years, a recurrent neural network called projection neural network was proposed for solving monotone variational inequalities and related convex optimization problems. In this paper, we show that the projection neural network can also be used to solve pseudomonotone variational inequalities and related pseudoconvex optimization problems. Under various pseudomonotonicity conditions and other conditions, the projection neural network is proved to be stable in the sense of Lyapunov and globally convergent, globally asymptotically stable, and globally exponentially stable. Since monotonicity is a special case of pseudomononicity, the projection neural network can be applied to solve a broader class of constrained optimization problems related to variational inequalities. Moreover, a new concept, called componentwise pseudomononicity, different from pseudomononicity in general, is introduced. Under this new concept, two stability results of the projection neural network for solving variational inequalities are also obtained. Finally, numerical examples show the effectiveness and performance of the projection neural network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.