Abstract

In project scheduling, a set of precedence-constrained jobs has to be scheduled so as to minimize a given objective. In resource-constrained project scheduling, the jobs additionally compete for scarce resources. Due to its universality, the latter problem has a variety of applications in manufacturing, production planning, project management, and elsewhere. It is one of the most intractable problems in operations research, and has, therefore, become a popular playground for the latest optimization techniques, including virtually all local search paradigms. We show that a somewhat more classical mathematical programming approach leads to both competitive feasible solutions and strong lower bounds, within quite reasonable computation times. The basic ingredients of our approach are the Lagrangian relaxation of a time-indexed integer programming formulation and relaxation-based list scheduling, enriched with a useful idea from recent approximation algorithms for machine scheduling problems. The efficiency of the algorithm results from the insight that the relaxed problem can be solved by computing a minimum cut in an appropriately defined directed graph. Our computational study covers different types of resource-constrained project scheduling problems, based on several, notoriously hard test sets, including practical problem instances from chemical production planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.