Abstract

In this paper, a novel boundary-type meshless method, the boundary point method (BPM), is developed via an approximation procedure based on the idea of Young et al. [Novel meshless method for solving the potential problems with arbitrary domain. J Comput Phys 2005;209:290–321] and the boundary integral equations (BIE) for solving two- and three-dimensional potential problems. In the BPM, the boundary of the solution domain is discretized by unequally spaced boundary nodes, with each node having a territory (the point is usually located at the centre of the territory) where the field variables are defined. The BPM has both the merits of the boundary element method (BEM) and the method of fundamental solution (MFS), both of these methods use fundamental solutions which are the two-point functions determined by the source and the observation points only. In addition to the singular properties, the fundamental solutions have the feature that the greater the distance between the two points, the smaller the values of the fundamental solutions will be. In particular, the greater the distances, the smaller the variations of the fundamental solutions. By making use of this feature, most of the off-diagonal coefficients of the system matrix will be computed by one-point scheme in the BPM, which is similar to the one in the MFS. In the BPM, the ‘moving elements’ are introduced by organizing the relevant adjacent nodes tentatively, so that the source points are placed on the real boundary of the solution domain where the resulting weak singular, singular and hypersingular kernel functions of the diagonal coefficients of the system matrix can be evaluated readily by well-developed techniques that are available in the BEM. Thus difficulties encountered in the MFS are removed because of the coincidence of the two points. When the observation point is close to the source point, the integrals of kernel functions can be evaluated by Gauss quadrature over territories. In this paper, the singular and hypersingular equations in the indirect and direct formulations of the BPM are presented corresponding to the relevant BIE for potential problems, where the indirect formulations can be considered as a special form of the MFS. Numerical examples demonstrate the accuracy of solutions of the proposed BPM for potential problems with mixed boundary conditions where good agreements with exact solutions are observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call