Abstract

This paper proposes a neural network architecture for solving systems of non-linear equations. A back propagation algorithm is applied to solve the problem, using an adaptive learning rate procedure, based on the minimization of the mean squared error function defined by the system, as well as the network activation function, which can be linear or non-linear. The results obtained are compared with some of the standard global optimization techniques that are used for solving non-linear equations systems. The method was tested with some well-known and difficult applications (such as Gauss–Legendre 2-point formula for numerical integration, chemical equilibrium application, kinematic application, neuropsychology application, combustion application and interval arithmetic benchmark) in order to evaluate the performance of the new approach. Empirical results reveal that the proposed method is characterized by fast convergence and is able to deal with high-dimensional equations systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.