Abstract

The problem of recovering a signal x∈Rn from a set of magnitude measurements yi=|〈ai,x〉|,i=1,…,m is referred as phase retrieval, which has many applications in fields of physical sciences and engineering. In this paper we show that the smoothed amplitude flow based model for phase retrieval has benign geometric structure under the optimal sampling complexity. In particular, we show that when the measurements ai∈Rn are Gaussian random vectors and the number of measurements m≥Cn, our smoothed amplitude flow based model has no spurious local minimizers with high probability, i.e., the target solution x is the unique global minimizer (up to a global phase) and the loss function has a negative directional curvature around each saddle point. Due to this benign geometric landscape, the phase retrieval problem can be solved by the gradient descent algorithms without spectral initialization. Numerical experiments show that the gradient descent algorithm with random initialization performs well even comparing with state-of-the-art algorithms with spectral initialization in empirical success rate and convergence speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.