Abstract

Atom probe tomography is a powerful tool for investigating nanostructures such as interfaces and nanoparticles in material science. Advanced analysis tools are particularly useful for analyzing these nanostructures characterized very often by curved shapes. However, these tools are very limited for complex materials with non-negligible peak overlaps in their respective mass-to-charge ratio spectra. Usually, an analyst solves peak overlaps in the bulk regions, but the behavior at interfaces is rarely considered. Therefore, in this work, we demonstrate how the proximity histogram generated for a specific interface can be corrected by using the natural abundances of isotopes. This leads to overlap-solved proximity histograms with a resolution of up to 0.1 nm. This work expands on previous work that showed the advantage of a maximum-likelihood peak overlap solving. The corrected proximity histograms together with the maximum-likelihood peak overlap algorithm were implemented in a user-friendly software suite called EPOSA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.