Abstract

AbstractWe present a method for solving partial differential equations characterized by highly localized properties in which the local defect correction (LDC) algorithm for time‐dependent problems is combined with a finite volume discretization. At each time step, LDC computes a numerical solution on a composite grid, a union of a global uniform coarse grid and a local uniform fine grid. The main feature of the method is that the discrete conservation property, typical of the finite volume approach is preserved on the composite grid. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.