Abstract

As air traffic congestion grows, ground-holding (or “gate-holding”) of aircraft is becoming increasingly common. The “ground-holding policy problem” (GHPP) consists of developing strategies for deciding which aircraft to hold on the ground and for how long. In this paper we present a stochastic linear programming solution to the static GHPP for a single airport. The computational complexity of existing solutions requires heuristic approaches in order to solve practical instances of the problem. The advantage of our solution is that, even for the largest airports, problem instances result in linear programs that can be solved optimally using just a personal computer. We present a set of algorithms and compare their performance to a deterministic solution and to the passive strategy of no ground-holds (i.e., to the strategy of taking all delays in the air) under different weather scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.