Abstract

Abstract For a third-order nonlinear boundary value problem (BVP), we develop two novel methods to find the solutions, satisfying boundary conditions automatically. A boundary shape function (BSF) is created to automatically satisfy the boundary conditions, which is then employed to develop new numerical algorithms by adopting two different roles of the free function in the BSF. In the first type algorithm, we let the BSF be the solution of the BVP and the free function be a new variable. In doing so, the nonlinear BVP is certainly and exactly transformed to an initial value problem for the new variable with its terminal values as unknown parameters, whereas the initial conditions are given. In the second type algorithm, let the free functions be a set of complete basis functions and the corresponding boundary shape functions be the new bases. Since the solution already satisfies the boundary conditions automatically, we can apply a simple collocation technique inside the domain to determine the expansion coefficients and then the solution is obtained. For the general higher-order boundary conditions, the BSF method (BSFM) can easily and quickly find a very accurate solution. Resorting on the BSFM, the existence of solution is proved, under the Lipschitz condition for the ordinary differential equation system of the new variable. Numerical examples, including the singularly perturbed ones, confirm the high performance of the BSF-based numerical algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.