Abstract

Estimation errors or uncertainities in expected return and risk measures create difficulties for portfolio optimization. The literature deals with the uncertainty using stochastic, fuzzy or probability programming. This paper proposes a new approach to treating uncertainty. By assuming that the expected return and risk vary within a bounded interval, this paper uses interval analysis to extend the classical mean-variance portfolio optimization problem to the cases with bounded uncertainty. To solve the interval quadratic programming problem, the paper adopts order relations to transform the uncertain programme into a deterministic programme, and includes the investors’ risk preference into the model. Numerical analysis illustrates the advantage of this new approach against conventional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.