Abstract
Discrete tomography deals with the reconstruction of discrete sets with given projections relative to a limited number of directions, modeling the situation where a material is studied through x-rays and we desire to reconstruct an image representing the scanned object. In many cases it would be interesting to consider the projections to be related to more than one distinguishable type of cell, called atoms or colors, as in the case of a scan involving materials of different densities, as a bone and a muscle. Unfortunately the general n-color problem with n > 1 is NP-complete, but in this paper we show how several polynomial reconstruction algorithms can be defined by assuming some prior knowledge on the set to be rebuilt. In detail, we study the cases where the union of the colors form a set without switches, a convex polyomino or a convex 8-connected set. We describe some efficient reconstruction algorithms and in a case we give a sufficient condition for uniqueness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.