Abstract

This paper proposes a method for solving mixed-integer nonlinear programming problems to achieve or approach the optimal solution by using modified genetic algorithms. The representation scheme covers both integer and real variables for solving mixed-integer nonlinear programming, nonlinear programming, and nonlinear integer programming. The repairing strategy, a secant method incorporated with a bisection method, plays an important role in converting infeasible chromosomes to feasible chromosomes at the constraint boundary. To prevent premature convergence, the appropriate diversity of the structures in the population must be controlled. A cross-generational probabilistic survival selection method (CPSS) is modified for real number representation corresponding to the representation scheme. The efficiency of the proposed method was validated with several numerical test problems and showed good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.