Abstract
Interval linear programming is used for tackling interval uncertainties in real-world systems. An arbitrary point is a feasible point to the interval linear programming model if it lies in the largest feasible region of the interval linear programming model, and it is optimal if it is an optimal solution to a characteristic model. The optimal solution set to the interval linear programming is the union of all solutions that are optimal for a characteristic model. In this paper, we review some existing methods for solving interval linear programming problems. Using these methods the interval linear programming model is transformed into two sub-models. The optimal solutions of these sub-models form the solution space of these solving methods. A part of the solution space of some of these methods may be infeasible. To eliminate the infeasible part of the solution space of above methods, several methods have been proposed. The solution space of these modified methods may contain non-optimal solutions. Two improvement methods have been proposed to remove the non-optimal solutions of the solution space of above modified methods. Finally, we introduce an improved method and its sub-models. The solution space of our method is absolutely both feasible and optimal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.