Abstract

We introduce a new family of trial wave-functions based on deep neural networks to solve the many-electron Schrödinger equation. The Pauli exclusion principle is dealt with explicitly to ensure that the trial wave-functions are physical. The optimal trial wave-function is obtained through variational Monte Carlo and the computational cost scales quadratically with the number of electrons. The algorithm does not make use of any prior knowledge such as atomic orbitals. Yet it is able to represent accurately the ground-states of the tested systems, including He, H2, Be, B, LiH, and a chain of 10 hydrogen atoms. This opens up new possibilities for solving large-scale many-electron Schrödinger equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.