Abstract
We consider the solution of the large-scale nonsymmetric algebraic Riccati equation XCX − XD − AX + B =0 , withM ≡ (D, −C; −B, A) ∈ R(n1+n2)×(n1+n2) being a nonsingular M-matrix. In addition, A and D are sparselike, with the products A −1 u, A −� u, D −1 v ,a ndD −� v computable in O(n )c omplexity (withn =m ax{n1 ,n 2}), for some vectors u and v ,a ndB, C are low ranked. The structure-preserving doubling algorithms (SDA) by Guo, Lin, and Xu (Numer. Math., 103 (2006), pp. 392-412) is adapted, with the appropriate applications of the Sherman-Morrison- Woodbury formula and the sparse-plus-low-rank representations of various iterates. The resulting large-scale doubling algorithm has an O(n) computational complexity and memory requirement per iteration and converges essentially quadratically. A detailed error analysis, on the effects of truncation of iterates with an explicit forward error bound for the approximate solution from the SDA, and some numerical results will be presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.