Abstract

The purpose of this research is to employ a method involving Chelyshkov wavelets to construct a numerical solution to the inverse problem of determining the right-hand side function of a non-linear fractional differential equation by utilizing over-measured data. The novelty of this research is that this type of inverse problem is studied by Chelyshkov wavelets. Firstly, the problem is reduced into a system of algebraic equations with an unknown right-hand side by means of the orthonormal base of Chelyshkov wavelets. Secondly, by choosing suitable nodes, this system is transformed into a homogenous system of algebraic equations. The solution of the homogenous system allows us to determine the coefficients of the bases vectors for the solution of the non-linear fractional differential equation. In the final step, the right-hand side is obtained by substituting the constructed solution into a non-linear fractional differential equation. The presented examples illustrate that the numerical solution, obtained by this method, is remarkably close to the exact solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.