Abstract

The article presents advances in the approach aiming to solve inverse problems of steady state and transient heat conduction. The regularization of ill-posed problem comes from the proper orthogonal decomposition (POD). The idea is to expand the direct problem solution into a sequence of orthonormal basis vectors, describing the most significant features of spatial and time variation of the temperature field. Due to the optimality of proposed expansion, the majority of the basis vectors can be discarded practically without accuracy loss. The amplitudes of this low-order expansion are expressed as a linear combination of radial basis functions (RBF) depending on both retrieved parameters and time. This approximation, further referred as trained POD-RBF network is then used to retrieve the sought-for parameters. This is done by resorting to least square fit of the network and measurements. Numerical examples show the robustness and numerical stability of the scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.