Abstract

Current parametric CAD systems require geometric parameters to have fixed values. Specifying fixed parameter values implicitly adds rigid constraints on the geometry, which have the potential to introduce conflicts during the design process. This paper presents a soft constraint representation scheme based on nominal interval. Interval geometric parameters capture inexactness of conceptual and embodiment design, uncertainty in detail design, as well as boundary information for design optimization. To accommodate under-constrained and over-constrained design problems, a double-loop Gauss-Seidel method is developed to solve linear constraints. A symbolic preconditioning procedure transforms nonlinear equations to separable form. Inequalities are also transformed and integrated with equalities. Nonlinear constraints can be bounded by piecewise linear enclosures and solved by linear methods iteratively. A sensitivity analysis method that differentiates active and inactive constraints is presented for design refinement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.