Abstract
We present a neural network approach to solve exact and inexact graph isomorphism problems for weighted graphs. In contrast to other neural heuristics or related methods this approach is based on a neural refinement procedure to reduce the search space followed by an energy-minimizing matching process. Experiments on random weighted graphs in the range of 100–5000 vertices and on chemical molecular structures are presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.