Abstract

A variant of particle swarm optimization (PSO) is represented to solve the infinitive impulse response (IIR) system identification problem. Called improved PSO (IPSO), it makes significant enhancement over PSO. To begin with, the population initialization step makes use of golden ratio to segment solution space so as to obtain high-quality solutions. It is followed by all particles using different inertia weights in velocity updating step, which is beneficial for preserving the balance between global search and local search. Subsequently, IPSO uses normal distribution to disturb the global best particle, which enhances its capacity of escaping from the local optimums. The above three operations cannot only guarantee high-quality solutions, strong global search capacity, and fast convergence rate, but also avoid low diversity, excessive local search, and premature stagnation. These properties of IPSO make it much better suited for IIR system identification problems. IPSO is applied on 12 examples. The experimental results amply demonstrate the capability of IPSO toward obtaining the best objective function values in all the cases. Compared with the other four PSO approaches, IPSO has stronger convergence and higher stability which clearly points out its desirable performance in search accuracy and identifying efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.