Abstract

The sine cosine algorithm (SCA) is a relatively novel population-based optimization technique that has been proven competitive with other algorithms and it has received significant interest from researchers in different fields. However, similar to other population-based algorithms, SCA tends to be trapped in local optima and unbalanced exploitation. Additionally, to our limited knowledge, the present SCA and its variants have not been applied to the high-dimensional global optimization problems. This paper presents an improved version of the SCA (ISCA) for solving high-dimensional problems. A modified position-updating equation by introducing inertia weight is proposed to accelerate convergence and avoid falling into the local optima. In addition, to balance the exploration and exploitation of the SCA, we present a new nonlinear conversion parameter decreasing strategy based on the Gaussian function. The effectiveness of the proposed ISCA is evaluated using 24 benchmark high-dimensional (D = 30, 100, 500, 1000, and 5000) functions, large-scale global optimization problems from the IEEE CEC2010 competition, and several real-world engineering applications. The comparisons show that the proposed ISCA can better escape from local optima with faster convergence than both the traditional SCA and other population-based algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call