Abstract

The graph coloring problem (GCP) is one of the most interesting classical combinatorial optimization problems in graph theory. It is known to be an NP-Hard problem, so many heuristic algorithms have been employed to solve this problem. In this article, the authors propose a new enhanced binary dragonfly algorithm to solve the graph coloring problem. The binary dragonfly algorithm has been enhanced by introducing two modifications. First, the authors use the Gaussian distribution random selection method for choosing the right value of the inertia weight w used to update the step vector (∆X). Second, the authors adopt chaotic maps to determine the random parameters s, a, c, f, and e. The aim of these modifications is to improve the performance and the efficiency of the binary dragonfly algorithm and ensure the diversity of solutions. The authors consider the well-known DIMACS benchmark graph coloring instances to evaluate the performance of their algorithm. The simulation results reveal the effectiveness and the successfulness of the proposed algorithm in comparison with some well-known algorithms in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.