Abstract

This paper aims to solve general fractional Lane-Emden-Fowler differential equations using the Haar wavelet collocation method. This method transforms the fractional differential equation into a nonlinear system of equations, which is further solved for Haar coefficients using Newton’s method. We have constructed the higher-order Lane-Emden-Fowler equations. We have also discussed the convergence rate and stability analysis of our technique. We have explained the applications and numerically simulated the examples graphically and in tabular format to elaborate on the accuracy and efficiency of this approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.