Abstract

A parallel quantum electrons wave packet computer code has been developed to study laser-atom interaction in the nonperturbative regime with attosecond resolution. The motion equations of the multi-configuration time-dependent hartree fock (MCTDHF) based on a sine discrete variable representation were solved by using an adaptive stepsize Runge-Kutta integrator of eight orders. Some efficient algorithms and strategies to accelerate the calculation velocity are introduced and discussed in details. Some illustrated imaginary time propagation and real time propagation have been respectively done in the paper. Single ionization probabilities calculated by using this one dimension MCTDHF model underestimate the accurate results calculated by solving time-dependent Schrodinger equation directly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.