Abstract

We apply to fixed charge network flow (FCNF) problems a general hybrid solution method that combines constraint programming and linear programming. FCNF problems test the hybrid approach on problems that are already rather well suited for a classical 0–1 model. They are solved by means of a global constraint that generates specialized constraint propagation algorithms and a projected relaxation that can be rapidly solved as a minimum cost network flow problem. The hybrid approach ran about twice as fast as a commercial mixed integer programming code on fixed charge transportation problems with its advantage increasing with problem size. For general fixed charge transshipment problems, however, it has no effect because the implemented propagation methods are weak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.