Abstract

The Artificial Ant problem is a common benchmark problem often used for metaheuristic algorithm performance evaluation. The problem is to find a strategy controlling an agent (called an Artificial Ant) in a game performed on a square toroidal field. Some cells of the field contain “food” pellets, which are distributed along a certain trail. In this paper we use Finite-State Machines (FSM) for strategy representation and present a new algorithm –MuACOsm – for learning finite-state machines. The new algorithm is based on an Ant Colony Optimization algorithm (ACO) and a graph representation of the search space. We compare the new algorithm with a genetic algorithm (GA), evolutionary strategies (ES), a genetic programming related approach and reinforcement learning on five instances of the Artificial Ant Problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.