Abstract
An expensive multimodal optimization problem (EMMOP) is that the computation of the objective function is time consuming and it has multiple global optima. This article proposes a decomposition differential evolution (DE) based on the radial basis function (RBF) for EMMOPs, called D/REM. It mainly consists of two phases: the promising subregions detection (PSD) and the local search phase (LSP). In PSD, a population update strategy is designed and the mean-shift clustering is employed to predict the promising subregions of EMMOP. In LSP, a local RBF surrogate model is constructed for each promising subregion and each local RBF surrogate model tracks a global optimum of EMMOP. In this way, an EMMOP is decomposed into many expensive global optimization subproblems. To handle these subproblems, a popular DE variant, JADE, acts as the search engine to deal with these subproblems. A large number of numerical experiments unambiguously validate that D/REM can solve EMMOPs effectively and efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.