Abstract

We study optimal control problems for semilinear elliptic equations subject to control and state inequality constraints. Both boundary control and distributed control problems are considered with boundary conditions of Dirichlet or Neumann type. By introducing suitable discretization schemes, the control problem is transcribed into a nonlinear programming problem. Necessary conditions of optimality are discussed both for the continuous and the discretized control problem. It is shown that the recently developed interior point method LOQO of [35] is capable of solving these problems even for high discretizations. Four numerical examples with Dirichlet and Neumann boundary conditions are provided that illustrate the performance of the algorithm for different types of controls including bang–bang controls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call