Abstract
A numerical relativity code designed to evolve rotating axisymmetric spacetimes is constructed. Both polarization states of gravitational radiation can be tracked. The source of the gravitational field is chosen to be a configuration of collisionless particles. The code is used to evaluate the stability of polytropic and toroidal star clusters. The formation of Kerr black holes by the collapse of unstable clusters is demonstrated. Unstable clusters with $\frac{J}{{M}^{2}}<1$ collapse to black holes, while those with $\frac{J}{{M}^{2}}>1$ collapse to new equilibrium configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.