Abstract

Clean energy resources such as wind power are playing an important role in power generation recently. In this paper, a modified version of multi-objective differential evolution (MODE) is used to tackle the extended dynamic economic emission dispatch (DEED) problem by incorporating wind power plant into the system. DEED is a nonlinear and highly constrained multi-objective optimization problem and the predicted load is varying with time. Fuel costs and pollution emission are the two objectives to be optimized and the valve point effect, spinning reserve, real power loss as well as the ramping rate are considered. To solve the model effectively, an ensemble of selection method is used in the MODE algorithm. The real-time output adjustment and penalty factor methods are used to deal with the complex constraints. The proposed method is firstly examined on several multi-objective benchmark problems and the DEED problem without considering the wind power to test its effectiveness of solving multi-objective optimization problems. Secondly, the model considering wind power is solved and the results show that the proposed algorithm is effective in handling such problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.