Abstract
Domain-independent dynamic programming (DIDP) is a recently proposed model-based paradigm for combinatorial optimization where a problem is formulated as dynamic programming (DP) and solved by a generic solver. In this paper, we develop anytime heuristic search solvers for DIDP, which quickly find a feasible solution and continuously improve it to prove optimality. We implement six anytime heuristic search algorithms previously used as problem-specific methods and evaluate them on nine different problem classes. Our experimental results show that most of the anytime DIDP solvers outperform an existing A*-based solver, mixed-integer programming, and constraint programming in proving optimality, solution quality, and primal integral across multiple problem classes. In particular, complete anytime beam search (CABS) performs the best, improving on the best-known solution for one instance of traveling salesman problem with time windows and closing five instances of one-to-one multi-commodity pick-and-delivery traveling salesman problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Conference on Automated Planning and Scheduling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.