Abstract

The Trefftz functions method has been developed very quickly. The paper presents the application of this method to solving direct and inverse problems of elasticity and thermoelasticity. The system of equations for displacements is reduced to a system of wave equations. Then the wave polynomials (Trefftz functions for wave equation) as base functions for several variants of Finite Element Method are used. In the paper, continuous FEMT and substructuring are considered. In the case of thermoelasticity, the temperature field occurs as inhomogeneity in one of the wave equations. It is shown how to get the particular solution in 2D and 3D. When using FEMT, the difference of solutions between the elements has to be minimized. The mechanical energy of the body depends on the velocity of the displacements. Therefore, the difference of the velocities between the elements is also minimized – it is a kind of physical regularization. The quality of the approximate solutions of direct and inverse problem was verified on the test example.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call