Abstract

The authors have developed a Taylor series method for solving numerically an initial-value problem differential-algebraic equation (DAE) that can be of high index, high order, nonlinear, and fully implicit, BIT, 45 (2005), pp. 561–592. Numerical results have shown that this method is efficient and very accurate. Moreover, it is particularly suitable for problems that are of too high an index for present DAE solvers. This paper develops an effective method for computing a DAE’s System Jacobian, which is needed in the structural analysis of the DAE and computation of Taylor coefficients. Our method involves preprocessing of the DAE and code generation employing automatic differentiation. Theory and algorithms for preprocessing and code generation are presented. An operator-overloading approach to computing the System Jacobian is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.